Телефон: +7(843) 203-26-92
Факс: +7(843) 203-22-06

Поиск по сайту

Обессоливание


Обессоливание воды

Обессоливание воды означает уменьшение содержания в ней растворенных солей. Этот процесс называют также деионизацией, или деминерализацией. Для морских и засоленных (солоноватых) вод такой процесс называют опреснением.

Нормами на питьевую воду предусмотрено, что их солесодержание должно быть менее 1 г/л, и лишь по специальному решению разрешается использовать воду с солесодержанием до 1,5 г/л. Однако в ряде регионов поверхностные и подземные воды содержат больше солей. Морская вода, составляющая основной запас воды на Земле, содержит от 10 до 40 г/л солей. Для использования таких вод для питьевых целей ее подвергают опреснению.

Для многих процессов в теплоэнергетике, химии, электронике требуется вода, содержащая минимальные количества солей, вплоть до сверхчистой, которая практически их не содержит.

Существует несколько способов обессоливания:

термический;
ионообменный;
мембранные;
обратный осмос;
электродиализ;
комбинированные.
Для опреснения засоленных вод используется термический метод, обратный осмос и электродиализ. Потребление при ионном обмене реагентов и объем отходов пропорциональны солесодержанию очищаемой воды, и поэтому его применение считается экономически оправданным при содержании солей до 2 г/л.

Термический метод позволяет обессолить воду с любым солесодержанием.

Во всем мире для опреснения морской воды наибольшее распространение получили установки обратного осмоса. Они обеспечивают получение воды с заданным высоким качеством. Лидирующее положение этого метода укрепляется по мере продолжающегося прогресса в технике изготовления мембран и дополнительного оборудования.

Для получения глубокообессоленной (деионизированной) воды используется как чисто ионообменная технология, так и ее комбинация с различными методами очистки, включающая обратный осмос. Термический метод, который ранее был обязателен для получения апирогенной воды для медицинских целей, и здесь уступил место обратному осмосу с УФ-облучением.

Термические методы обработки воды

Старейшим методом получения обессоленной воды (дистиллята) является термический метод – перегонка, дистилляция, выпарка.

Основой процесса является перевод воды в паровую фазу с последующей ее конденсацией. Для испарения воды требуется подвести, а при конденсации пара – отвести тепло фазового перехода. При образовании пара в него наряду с молекулами воды переходят и молекулы растворенных веществ в соответствии их летучестью.

Важнейшим преимуществом данного метода являются минимальные количества используемых реагентов и объем отходов, которые могут быть получены в виде твердых солей.

Тепловая и экономическая эффективность метода определяется режимом испарения и степенью рекуперации тепла фазового перехода при конденсации пара.

По характеру использования дистилляционные установки подразделяются на одноступенчатые, многоступенчатые и термокомпрессионные.

Наибольший интерес представляет использование выпарных установок в сочетании с ионообменными и реагентными схемами. В этих условиях возможно оптимизировать расход реагентов, тепла и решить как экономические, так и экологические проблемы.

Обессоливание воды ионным обменом

Наиболее часто обессоливание воды производят ионным обменом. Это наиболее отработанный и надежный метод.

Частичное обессоливание воды происходит при ее умягчении методами Н-Na-катионирования, Н-катионирования с голодной регенерацией, Н-катионирования на слабокислотном катионите. В этих процессах происходит извлечение солей жесткости и частичная их замена на катион водорода, который разрушает бикарбонат-ионы с последующим удалением образовавшегося газа из воды. Степень обессоливания соответствует количеству удаленного СаСО3.

При глубоком обессоливании из раствора удаляются все макро- и микроэлементы, т.е. соли и примеси. Степень очистки раствора по каждому макроэлементу (катиону и аниону) зависит от их сродства к данному иониту, т.е. от расположения в рядах селективности. Подбирая иониты, степень их регенерации и количество ступеней очистки, можно добиться необходимой глубины очистки воды практически любого исходного состава.

Обессоливание может проводиться в одну, две, три ступени или смешанным слоем ионитов. В каждой ступени раствор последовательно очищается сначала на катионите в Н-форме (при этом извлекаются все находящиеся в растворе катионы), а затем на анионите в ОН-форме (при этом извлекаются находящиеся в воде анионы).

Более глубокое извлечение анионов может протекать только на сильноосновных анионитах.

Высокую степень очистки можно обеспечить в одном аппарате со смесью катионита в Н-форме и анионита в ОН-форме, т.н. фильтре смешанного действия. В этом случае отсутствует противоионный эффект, и из воды за один проход через слой смеси ионитов извлекаются все находящиеся в растворе ионы. Очищенный раствор имеет нейтральное рН и низкое солесодержание, примерно в 5-10 раз ниже, чем на одной ступени ионного обмена. Допускается работа с очень высокими скоростями очистки раствора, зависящими от его исходного солесодержания.

После насыщения ионитов для их регенерации смесь необходимо предварительно разделить на чистые катионит и анионит (они, как правило, имеют некоторое различие по плотности). Разделение может производиться гидродинамическим методом или путем заполнения фильтра концентрированным 18%-ным раствором щелочи.

Из-за сложности операций разделения смеси ионитов и их регенерации такие аппараты используются в основном для очистки малосоленых вод, например, контурных, для глубокой доочистки воды, обессоленной на раздельных слоях ионитов либо обратным осмосом. То есть в тех случаях, когда регенерация проводится редко, либо иониты применяют для получения сверхчистой воды с сопротивлением, близким к 18МОм/см, в энергетике и микроэлектронике – там, где никакие другие способы не могут обеспечить заданное качество.

Обратный осмос и нанофильтрация

Извлечение растворенных веществ из воды может производиться мембранными методами.

Уровень обессоливания определяется селективностью мембран.

Методом нанофильтрации можно достигнуть частичного обессоливания, удалив соли жесткости вместе с двухзарядными анионами и частично – однозарядные катионы натрия и калия и анионы хлора.

Более глубокое обессоливание обеспечивает низконапорный обратный осмос. Максимальная эффективность по всем компонентам обеспечивается обратноосмотическими мембранами, работающими при высоком давлении. Суммарная степень обессоливания зависит от катионного и анионного состава воды и ориентировочно составляет: для нанофильтрации 50-70%, для низконапорного обратного осмоса 80-95%, для высоконапорного 98-99%.

Основные особенности метода обратного осмоса рассмотрены выше.

Для обеспечения нормальной эксплуатации обратноосмотических и нанофильтрационных установок необходимо, чтобы вода, подаваемая на мембраны, соответствовала определенным нормам, а именно:

Подаваемая на мембраны вода должна содержать:

Менее 0,56 мг/л взвешенных веществ;
Менее 2-3 мгО2/л коллоидных загрязнений;
Свободного хлора менее 0,1 мг/л для композитных полиакриламидных мембран и менее 0,6-1,0 мг/л для ацетатцеллюлозных;
Малорастворимые соли (железа, кальция, магния, стронция) в концентрациях, не вызывающих их отложение на мембранах;
Микробиологические загрязнения должны отсутствовать;
Температура подаваемой воды не должна превышать 35-45oС;
рН исходной воды должен находиться в пределах 3,5-7,2 для ацетатцеллюлозных мембран и 2,5-11,0 для полиакриламидных.
Для обеспечения указанных требований необходимо обеспечить предочистку воды перед ее подачей на мембранную установку. Она включает в себя узлы: механической фильтрации-обезжелезивания, дехлорирования, умягчения и дозирования ингибитора, обеззараживание ультрафиолетом.

Важным аспектом при расчете мембранных установок является учет температуры питающей воды. Все показатели мембран даются для температуры 25?С. В реальных условиях температура, как правило, существенно ниже.

Так, если например мембрана при температуре 25?С дает 500 л/час, то при 10?С производительность составляет 330 л/час, а при 5?С 250 л/час.

Соответственно, при расчете установки необходимо устанавливать такое количество элементов, которое обеспечит заданную производительность при снижении температуры, причем это количество может потребоваться в 2 раза больше, чем при стандартной температуре. Это существенно повышает стоимость установки. В ряде случаев, при наличии дешевого тепла, выгоднее производить предварительный подогрев питающей воды.